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ABSTRACT

There are many problems associated with communication

networks. One of the more familiar ones is the frequency

assignment problem. Many approaches and techniques have been

used in the past in an attempt to solve this problem. This

thesis examines a subproblem of the frequency assignment

problem, which aids the decision-maker in placing additional

links in a network, once a frequency assignment is found.

Given a conflict graph for a communications network, the

problem involves finding the maximum number of arcs in the

corresponding digraph. This digraph is a worst case model for

the actual network and will show which additional links may be

added to the network in order to enhance communication

capabilities. An algorithm was developed to help solve this

problem after lower and upper bounds were established for its

optimal solution. The algorithm obtains a solution which

falls within the bounds and achieves the bounds in special

cases.
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I. INTRODUCTION

The term "graph" used in this paper denotes something

quite different from the graphs that one may be familiar with

from calculus or analytic geometry. The graphs used here are

geometrical figures made up of points called nodes or vertices

and lines connecting these points called arcs or edges.

Because graphs are a simple and systematic way to represent a

binary relation among many systems, graphs are a very useful

tool in modeling. Some of the systems that have been modeled

using graphs arise from engineering, environmental, social

science and economic problems.

The theory of graphs has been around for many years,

dating back to the middle of the 18th century. In 1736, the

famous Swiss mathematician, Leonhard Euler (1707-1783), used

graph theory to solve the Konigsberg Bridge problem, which has

become famous since then. The city of Konigsberg is located

on the banks and on two islands of the Pregel River. At that

time, the various parts of the city were connected by seven

bridges as shown in Figure 1.1.

The people of Konigsberg wanted to know if it was possible

to start at one point, cross each of the seven bridges exactly

once, and return to the starting point. Euler showed that it

was not possible, and his methods laid the foundations of

1



Figure 1.1 The Konigsberg Bridge Problem

graph theory. From that point on, graph theory has always had

close ties to applications.

Some of the applications which have been studied using

graph theoretic principles include food webs, transportation

problems, map colorings, communication networks and many more.

The one application that will be looked at in this paper is a

communication networking problem which consists of many

different parts or submodels. Before giving the background of

the communication problem, it should be known that this paper

was written with many definitions, notations, and terms that

are fairly standardized within the field of graph theory but

may not be familiar to the reader.

General definitions or terms that are used in the chapters

to follow will be found at the beginning of each chapter so as

to enhance the continuity of the material presented. The

terms and definitions from the field of graph theory that are

used in the paper are adopted from the well-known graph

theorist, Fred S. Roberts [Ref. 1], unless otherwise stated.
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They are generally accepted by all graph theorists.

Definitions and terms that are more specific to the material

being presented will remain with that section.

3



II. NATURE OF THE PROBLEM

The purpose of this chapter is to present background

material on the communication problem, to summarize recent

work that has been completed on several communications

problems which use different techniques, and to state the

specific objectives and approach of this thesis.

A. DEFINITIONS/TERMINOLOGY

As mentioned earlier in the introduction, a node is simply

a point which graphically represents an object of a given set.

Other terms for a node are point and vertex. An edge is a

line which is drawn between two nodes and represents a

relation between the two. Two nodes or vertices with an edge

between them are said to be adjacent. The relation may also

be directed from one vertex to another, by drawing an arrow in

that direction on the edge. This is called an arc. Other

terms used for an arc are directed edge or directed link. To

be more precise it is necessary to understand the basic

difference between a graph and a directed graph or digraph.

A digraph D = (V,A) is a pair where V is the set of vertices

and A is the set of arcs, (u,v), where u and v are elements of

V. The notation V(D) and A(D) correspond to the vertex set

and the arc set of digraph D, respectively. A graph G = (V,E)

is a pair where V is a set of vertices and E is a set of

edges, (w,x), where w and x are elements of V. Again, V(G)
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and E(G) are the vertex and edge set of graph G. Two things

to conclude from these definitions are: (1) that arcs go

with digraphs and edges go with graphs; and (2) an arc is an

ordered pair of vertices in a digraph which represents a

direction and an edge is a pair of vertices which are not

ordered in a graph.

There are a couple of communication terms that must also

be defined. The word net is a communication term used for a

collection of stations that are linked together by a common

frequency. Frequency assignment is a process of assigning

frequencies to the transmitters in a communication network in

such a way as to meet certain objectives.

The final concept to be discussed in this section will be

the concept of computational complexity. Because there are

many variables and factors associated with a communications

network, there are many problems and subproblems involved.

Many of these smaller problems, even taken separately, do not

possess efficient solutions. One class of these problems

which are very difficult to solve is the class of NP-complete

problems. Aho, Hopcroft and Ullmann claim there are two

approaches to this type of problem,

When such a problem is encountered, it is often useful to
determine if the inputs to the problem have special
characteristics that could be exploited in trying to devise
a solution, or if an easily found approximate solution could
be used in place of the difficult-to-compute exact solution.
[Ref. 2:p. 306]

The approximate solution that they talk about in the second

approach is normally obtained from a heuristic, which is an

5



algorithm that quickly produces good, but not necessarily

optimal solutions. Many believe that no algorithm, which

solves an NP-complete problem is substantially more efficient

than the obvious approach of trying all possibilities. This

process is referred to as enumeration.

Another way to describe NP-complete problems has to do

with the time complexity involved in finding a solution. Time

complexity is generally described as being either average case

or worst case, the latter usually being easier to compute.

Worst case time complexity describes the largest amount of

time required by an algorithm to solve the given problem,

which is dependent upon the characteristics of the input. An

algorithm is said to be polynomial-bounded if its worst case

time complexity is bounded by a polynomial function of the

input size. Thus, a problem is normally considered NP-

complete when there is no polynomial-bounded algorithm to

solve the problem. The list of NP-complete problems has grown

extensively in the last decade, and many have important

practical applications. Garey and Johnson (Ref. 3] have

accumulated a large collection of NP-complete problems and

describe them briefly in their book on NP-completeness.

B. PROBLEM DESCRIPTION

A radio communications network, or system, consists of

radio stations that are equipped with transmitters and

receivers. When a station in the network receives information

from another station on the net, a link is said to exist from

6



the transmitting station to the receiving station. The inter-

connection of the stations and links can be viewed as a set of

nodes representing the radio stations, joined together by arcs

representing the links that exist in the network. Communica-

tion networks may consist of stations in which every radio at

a station is a receiver/transmitter. So, there will always be

the same number of receivers as transmitters in those

networks. Others will assume that there are separate

transmitters and separate receivers located at each station.

In those networks, there may not be the same number of trans-

mitters as receivers.

The radio frequency communication environment has become

increasingly complex as more and more receivers and transmit-

ters have been added to perform certain tasks in both military

and civilian areas. Therefore, the decision-makers, such as

frequency managers and communications officers, face many

problems in managing a communications system. This growth in

the overall use of the electromagnetic spectrum "has necessi-

tated a careful design and management of any communications

network to allow for accurate, fast, interference-free, and

reliable communication systems." [Ref. 4:p. 829] The objec-

tives mentioned here are the familiar requirements associated

with any effective communication system. Some systems may

also require security, particularly when talking about

military applications.

7



There are obviously many different problems associated

with communication systems, but the one that will be examined

in detail in this paper is the frequency assignment problem.

One of the most critical design problems in a radio
communication network is the assignment of transmit
frequencies to stations (nodes) so that designated key
communication links will not be jammed due to self
interference. [Ref. 5:p. 133]

Thus, the overall objective in assigning frequencies to the

network is to achieve the most reliable system possible.

There are many forms of the frequency assignment problem that

arise in managing a system. However, most of the frequency

assignment problems are actually optimization problems with

the following form: Given a number of transmitters in a

network that require frequencies, those frequencies are to be

assigned, subject to certain constraints that minimize

different types of interference or minimize the amount of

spectrum utilized. Another form of the frequency assignment

problem occurs when additional nets must be added to an

existing communication network. In this case, a frequency

must be assigned to the new net so that the constraints are

still satisfied and the interference remains minimal.

The frequency assignment process is obviously highly

dependent upon many factors found within the communications

network. Some of these factors include: (1) number of

stations in the network; (2) location of the stations; (3)

radio equipment used at the stations; (4) links to be

established among the stations; (5) frequencies available for

8



azsignment; and (6) climatological conditions present at the

network. It is not hard to understand how these factors could

affect frequency assignment. Some of these factors are not as

easy to control as others, and some may be given as initial

conditions to the problem. For instance, the climatological

conditions and equipment available may be factors which cannot

be altered. Alternately, the number of stations, locations,

equipment, etc., may already be determined and the problem is

to find an assignment for the given setup.

Hale [Ref. 6:p. 1497- wrote that the first frequency

assignment problem occurred when it was discovered that inter-

ference was present among several transmitters assigned to the

same or closely-related frequencies. So, the first frequency

problem was to minimize or eliminate this type of interference

among transmitters in a network. This is only one type of

interference that may be present in a system. Other types

will be discussed later. In addition, the constraints needed

to even partially solve the problems will be addressed.

The solution that was first used to solve this problem was

to assign different noninterfering frequencies to each of the

transmitters if possible. This method wasted a lot of the

frequency spectrum, and with the growing demands on the

spectrum, was not considered an acceptable solution. There-

fore, the managers of the spectrum had to consider different

approaches to the frequency assignment problem.

9



One particularly interesting fact about the frequency

assignment problem is that many are equivalent to generalized

graph coloring problems as Hale [Ref. 6:p. 1497] points out.

This approach will be further investigated later in this

paper. At that point, the graph coloring problem will be

defined in greater detail. Graph coloring problems are

optimization problems like the majority of frequency

assignment problems. These problems are also some of the most

famous optimization problems that have ever been studied.

It is important to understand that the frequency assign-

ment problem was not always thought of as an optimization

problem as it is today. In fact, the problem was so diverse

and complex that formal mathematical models were not even

considered as a way to approach the problem until the 1960's.

However, the interest in formal frequency assignment models

has increased significantly. This can be seen from the number

of articles appearing on the subject. This thesis will also

examine the problem using a formal model using graph theory

principles. But despite all of the findings and conclusions

about the problem, many frequency managers and planners still

do not believe that formal models are a viable approach to

many varieties of frequency problems that occur in the real

world. [Ref. 6:p. 1497]

A major reason for this skepticism is that many believe

that the formal models can handle only a limited number of the

constraints or variables that are associated with a real world

10



problem. This reason is easily justified by the various

constraints which different authors choose to model when

researching the problem. For instance, Zoellner and Beall

[Ref. 7] consider only cochannel constraints while concluding

that their method obtains significant spectrum savings. This

leads to a discussion of the different constraints associated

with a communications network.

Zoellner and Beall [Ref. 7:p. 314] classify the electro-

magnetic compatibility constraints found in communications

networks into three groups:

1. cochannel constraints

2. adjacent channel constraints

3. cosite constraints.

The following descriptions of the three groups are from

Mathur, Salkin, Nishimura, and Morito [Ref. 4:pp. 829-830].

Cochannel constraints arise when certain pairs of transmitting

nets located in the same area and with sufficient power so

that their transmission areas overlap, are assigned the same

frequency or channel. Thus two different nets may exist at

two different stations altogether or even within the same

station. In the latter case, the station has multiple

transmitter/receiver radios. The second type of constraint,

adjacent channel constraints, exists when certain pairs of

freauencies must be separated by a minimum amount in order to

avoid interference. For example, two transmitters cannot use

adjacent frequencies. This separation could be measured in

11



terms of a certain percentage of the transmitting frequencies

or as a specific interval of the spectrum. For example, a

necessary separation of 3 kHz could be imposed. Finally,

cosite constraints describe conditions in which subsets of

transmission frequencies should not be assigned to nets which

are in close proximity to each other in order to avoid

potential interference.

Intermodulation occurs when secondary frequencies are

created from an interaction of multiple frequencies that are

transmitting simultaneously in the network. When these

secondary frequencies interfere with other frequencies in the

network, intermodulation interference occurs. So intermodula-

tion is a type of cosite constraint which is hard to satisfy

in the frequency assignment problem.

Mathematically, cochannel and adjacent channel constraints

are relatively easy to describe. Therefore, systems with

these conditions have been studied and investigated in some

detail. Many different techniques and approaches have been

used in the past to consider a network of this type including:

a graph coloring model, set-partitioning procedures, nonlinear

programming techniques, and integer programming models. Some

of these particular methods will be described later. The

first model considered in greater detail uses integer

programming techniques for a system with adjacent channel

constraints and cosite constraints. The cosite constraints in

the model are of the intermodulation type.

12



Once the different techniques are summarized, this thesis

will describe the formulation and analysis of an algorithm

that was created by the author. The algorithm was developed

to solve a particular subproblem of a communications network

that was discovered while studying the frequency assignment

problem. This subproblem is closely associated with the

frequency assignment problem and helps the decision-maker to

make additional decisions once the optimal assignment is

found.

C. MODELING THE FREQUENCY ASSIGNMENT PROBLEM AS AN INTEGER

PROGRAM

1. Introduction

This section describes the approach and techniques

used by Mathur and others [Ref. 4] to model the frequency

assignment problem. Their approach was basically to model the

communication network using an integer programming model with

the associated adjacent channel and cosite constraints.

2. Definitions

Z is the notation used for the set of integers

{...-3,-2,-1,0,1,2,3... ). The following definition of a

linear program is taken from Bazaraa and Jarvis [Ref. 8:p. 2].

A linear programming problem (linear program) is a problem to

minimize or maximize a linear function, called an objective

function, in the presence of linear constraints of the

inequality and/or the equality type. The following is an

example of a linear programming problem.

13



Minimize clx1 + c2 x 2 + c 3x 3  (objective function)

subject to a,,x, + alzx2 + a 13x 3  b, (constraint 1)
a2,xl + a 22x 2 + a 23x 3 5 b 2  (constraint 2)

The coefficients c1, c2 and c3 and the aij are known

coefficients and x1, x2 and x3 are decision variables to be

determined. The two constants b, and b2 are known constants

which represent requirements to be satisfied, and are minimal

requirements in this example. A set of variables {x1,x2,x3)

which satisfy all the constraints is called a feasible

solution to the linear program. One of the best feasible

solutions to the program is called an optimal solution. In

this example, a feasible solution that gives the minimal value

for the objective function would be an optimal solution. (A

linear program can have more than one optimal solution.) The

value of the objective function corresponding to an optimal

solution is called the optimal value of the linear program.

If any component of the objective function or

constraints contains nonlinear functions, then the problem is

called a nonlinear programming problem (nonlinear program).

An integer linear programming problem, or integer program, is

a linear programming problem wherein some or all of the

decision variables are restricted to be integer-valued. There

are also integer nonlinear programming problems. Both are

called integer programs for brevity.

14



3. Problem Formulation

The communication network under consideration consists

of a station that has a set of N transmitting frequencies

{FI,F 2,...,FN) and one receiving frequency, FR. Without loss of

generality, the frequencies can be thought of as being

positive integers. As mentioned earlier, intermodulation

occurs when secondary frequencies are created from the trans-

mitting frequencies. The secondary frequencies, called

intermodulation frequencies, can only occur as integer linear

combinations of the transritting frequencies [Ref. 4:p. 831].

Intermodulation interference occurs when one of the intermodu-

lation frequencies matches one of the receiving frequencies.

Therefore, in mathematical terms, intermodulation interference

occurs in the network whenever

N

FR XjFj Xi O Z (2.1)

N

The sum Q X, I is called the order of interference and
i:=l

determines the level of interference expected in the network.

If Q is small, then interference will be strong. So part of

the problem in finding a frequency assignment, when cosite

constraints are modeled, includes minimizing this order of

interference. The integer programming model described thus

far is:

15



Model 1
N

Minimize Q = 1 lxii (2.2)
i=l

N
subject to % XiF i = FR Xi ( Z (2.3)

i=l

Once this nonlinear integer program is solved, which

is an NP-complete problem, it can be determined whether or not

the current set of frequencies are acceptable based upon the

optimal value of Q. We call this optimal value Q*. If Q* is

less than a specified, previously determined, tolerance level,

then this assignment is unacceptable. This means that the

transmitting frequency, FR, can be interfered with by some

combination of the transmitting frequencies, and the frequency

manager would have to change the assignment in some way.

After the change, the new assignment would have to be analyzed

using the same model in order to calculate the new value of

Q*. The overall process of selecting a frequency assignment

is actually a problem of iteratively finding an acceptable

assignment of the entire network.

In reality, Model 1 does not accurately describe the

constraints which are found in a real-world communication

network. The linear integer combination of transmitting

frequencies does not have to match the receiving frequency

exactly before intermodulation interference occurs. The

combination has only to fall within a certain neighborhood

16



around the receiving frequency to cause interference. So

constraint 2.3 in Model 1 should be modified to look like

N
FR-GB 5 7 XiFi 5 FR+GB (2.4)Li~l

where GB is a known parameter called the guard band. In other
N

words, if the combination XiF i falls within the interval
i=l

[FR-GB,FR+GB], then the given assignment will interfere with FR.

Thus the model changes to:

Model 2
N

Minimize Q = i il
i=l

subject to FR-GB 5 XiFi ! FR+GB X, C Z
i=l

This model can be considered a worst case approach

because it assumes that all N of the station's transmitting

frequencies are active simultaneously and this may never be

the case. In real world networks, it is not very probable

that all N nets at a station will be simultaneously active.

Therefore, another parameter, K, (K 5 N) may be defined as the

maximum number of nets that are simultaneously active. In

this case, when the model is solved, intermodulation

interference must only be checked for integer combinations of

K or fewer frequencies. However, it is possible that all nets

17



could be simultaneously active, in which case K = N.

Mathematically, this becomes another constraint in the model

which Mathur and others [Ref. 4:p. 831] derived.

This approach can, in fact, help the decision-maker in

assigning frequencies to the network, by evaluating the order

of interference prior to the actual assignment. Mathur and

others describe frequency assignment as the problem which,

... requires that the decision maker assign to each net of
the communication network a frequency from a set of resource
frequencies (say) F,,F 2,...,FN such that for each ship, the
assigned frequencies do not create intermodulation
interference of order less than an acceptable order. [Ref.
4:p. 832]

This description obviously is directed towards a naval

application since it mentions ships. However, the word

"station" could be substituted for "ship" in order to apply to

any communication network.

In addition to this interference constraint, if

adjacent channel constraints (separation constraints) are to

be considered, then the frequencies at each station must be

separated by a minimum amount. This separation minimum is

often defined as a percentage (a%) of the transmitting

frequency. For example, given two frequencies Fi and Fi in a

network, Fi would not cause any separation problem with Fi

unless Fi fell within the interval [Fj-a%(Fj;,Fj+a%(Fj)].

The frequency assignment problem which considers

intermodulation interference and separation constraints can be

solved using a technique called branch and search, which is

outlined by Mathur and others [Ref. 4:pp. 835-836]. In the

18



algorithm, start by assigning frequencies to two nets in the

system and test the pair with respect to the intermodulation

interference and separation limits that are given for the

network. This is accomplished in several steps.

(1) For each pair of nets, test to ensure frequencies are
minimally separated using the a parameter given.

(2) For each station, test to ensure frequencies do not
create intermodulation interference that is not
acceptable using the order of interference, Q, that
is prescribed.

If steps (1) and (2) are satisfied, then the process

is continued by assigning resource frequencies to those nets

in the network that still require frequencies, and then this

assignment is tested. If the current assignment fails to

satisfy both (1) and (2), then it must be modified and the

modification retested. The assignment is modified by the

change of one or more of the frequencies.

Mathur and others [Ref. 4:p. 834] applied the model

to a specific network consisting of five ships and six nets,

with frequencies ranging from 6750-29004 kHz. The parameters

used for the problem were: guard band (GB) = 6 kHz,

separation parameter (a) = 5, lowest acceptable order (Q) = 6,

and K = 2. This gives some idea of the magnitude of the

values which the parameters may take on.

Of the two constraints considered in the problem, the

separation constraint is the easier to evaluate. Since this

constraint requires that two frequencies be separated by a

certain amount, the decision-maker can usually meet this
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constraint by quick inspection if the network is small.

Whereas, the intermodulation constraint may be difficult to

evaluate even for small networks. This is due to the nature

of the integer linear combination required by the constraint.

For example, consider the frequency assignment problem with

three frequencies given in Table 2.1. It is easy to see that

TABLE 2.1

FREQUENCY ASSIGNMENT EXAMPLE

Frequency 1 6,750 kHz
Frequency 2 6,500 kHz
Frequency 3 12,755 kHz

parameters: GB = 6 kHz 5 Q = 6 K = 2

Frequencies 1 and 2 do not meet the separation constraint

because they are so close together. But it is not as apparent

that an integer combination of Frequency 1 and Frequency 2,

(3F2-Fl), is within the guard band around Frequency 3, and

would cause intermodulation.

4. Observations/Conclusions

The network under consideration assumes several

conditions that may not be present in a realistic

communication network. It assumes that there is only one

receiving frequency at each station and that each station is

not in close proximity to another station in the network.
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If there were more than one receiving frequency at a

station, then it would be possible for the transmitting

frequencies to combine and interfere with any of the receiving

frequencies. In this case, the integer program would have to

be solved as many times as there are receiving frequencies at

the station. For example, if there are five receiving

frequencies and five transmitting frequencies, (N = 5), at a

station, then the model would have to be solved five times,

with constraint 2.4 changing each time to cover the five

receiving frequencies. This must be done for each station in

the network, so the approach is obviously very time-consuming

for large N.

If two stations are closely located in the network,

then another factor must be considered. In this case, it is

possible for transmitting frequencies at the two stations to

combine and interfere with any receiving frequency at either

station. For instance, consider a network with two stations,

Station A with N transmitting frequencies and N receiving

frequencies, and Station B with P transmitting frequencies and

P receiving frequencies. When solving the integer programming

model for this network, the index i must range over all N+P

transmitting frequencies each time the program is solved. The

program must also be solved N+P times because there are that

many receiving frequencies.

The search procedure eventually terminates with either

an assignment that meets all interference constraints or with
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the conclusion that there is no interference-free assignment,

based upon the given resource frequencies. This second

conclusion would not be acceptable in most cases, since the

communication network must still function in order to carry

out its mission. At that point, the frequency manager would

have two courses of action to consider. He could decide to

use the frequency assignment which gave the least amount of

interference, or he could request additional frequencies to

work with and thus increase the number of resource frequencies

available to him.

There are several conclusions to be drawn about the

overall branch and search method. Each step in the method

involves solving an integer program which is an NP-complete

problem in itself and is thus very time-consuming for a large

network. If K is small, the time required to solve the

integer programs, and so the overall problem, is relatively

minimal as concluded by Mathur and others [Ref. 4]. They

claim that two iterations of the process required about ten

seconds of CPU time using a DEC-20 computer for a network made

up of ten stations and 20 nets. However, in a more realistic

network of about 100 stations and 200 nets, the time required

to solve the problem may be unacceptable. This would be

especially true if the parameter K was larger than two.

Because the solution of both the overall branch and

search method and the integer program is an enumerative

process, the results cannot be guaranteed in a timely fashion.
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(In the future, this method may be implemented with quicker

results by taking advantage of parallel processors.) As

concluded by Mathur and others,

... it is very hard to predict, a priori, if given a
particular communication network and frequency resource
list, whether the algorithm for the underlying frequency
assignment problem will converge in a reasonable amount of
computer time. [Ref. 4:p. 838]

So other approaches should be considered to solve the

frequency assignment problem, before any real use of the model

can be implemented successfully.

The next section will describe a method that considers

the frequency assignment problem as a graph coloring problem.

D. LOOKING AT THE FREQUENCY ASSIGNMENT PROBLEM AS A GRAPH

COLORING PROBLEM

1. Introduction

Since different forms of the frequency assignment

problem are similar to the graph coloring p:roblem of graph

theory, this enables a whole new approach to the problem.

Zoellner and Beall [Ref. 7:p. 314] wrote that B.H. Metzger was

the first to recognize that the classical graph coloring

problem was equivalent to the frequency assignment problem

where only cochannel constraints are modeled. The vertices

represent the stations in the network and the edges represent

the cochannel restrictions between pairs of stations.

Because of the similarity between the two problems, if

new methods are found to solve the graph coloring problem,

these same techniques can be applied in solving the frequency
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assignment problem. This was the idea used by Cameron [Ref.

9] when he looked at the graph coloring problem as a sequence

of set-covering problems. His approach is discussed in this

section but there are several definitions and terms to be

explained first.

2. Definitions

The following definition of the generalized graph

coloring problem is taken from Roberts [Ref. 10:pp. 97-98].

Given a graph G = (V,E) with n vertices, the goal is to assign

a color to each vertex in G, in such a way that if two

vertices are adjacent, they receive a different color. If the

assignment can be performed using k colors, the assignment is

called a k-coloring of G, and G is said to be k-colorable.

Obviously, any graph with n vertices can be colored with n

colors, but this is not as interesting as finding the minimum

number of colors required. Finding the smallest number of

colors is the generalized graph coloring problem. The

smallest number k, for which the graph G is k-colorable, is

called the chromatic number of G and is denoted x(G). For

example, the graph in Figure 2.1 has chromatic number 3,

because vertices 1, 2 and 7 can be assigned color #1, vertices

3, 5 and 6 can be assigned color #2, and vertex 4, color #3.

This coloring is not unique for the graph in Figure 2.1, but

a chromatic number less than three is not possible. This can

be easily proven since the graph contains triangles made up of

vertices 1, 3 and 4 and vertices 1, 4 and 5.
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2

6

5 4

Figure 2.1 A Coloring Problem

For certain classes of graphs, the chromatic number is

known. Other classes may have lower and/or upper bounds on

the chromatic number. However, determining x(G) for an

arbitrary graph is a difficult task and is in fact an NP-

complete problem.

Terms and definitions associated with the set-covering

problem are taken from the article by Cameron [Ref. 9].

Consider a rectangular binary matrix A with elements

aij f (0,1) where aij is the element in the ith row and jth

column. The jth column of the matrix is said to "cover" every

row for which aij = 1. A cover for the matrix is the

collection of columns which together cover every row in the

matrix. A collection of the smallest number of columns that

are required to cover A is called a minimum cover for matrix

A. Thus, the problem of finding a minimum cover for a binary

matrix is called a set-covering problem. Figure 2.2 is an

example to help illustrate this concept. An important fact to
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remember is that the minimum cover does not have to be unique,

as it is for matrix A in Figure 2.2.

1 1 0 1 0 0
0 0 1 0 0 0

A= 1 0 1 0 0 1
0 0 0 1 1 0
0 1 1 1 0 1

Problem: Find a minimum cover for matrix A.

Column 1 covers Rows 1 and 3.
Column 2 covers Rows 1 and 5.
Column 3 covers Rows 2, 3 and 5.
Column 4 covers Rows 1, 4 and 5.
Column 5 covers Row 4.
Column 6 covers Rows 3 and 5.

Columns 1, 3 and 4 cover matrix A.
Columns 2, 3 and 5 cover matrix A.

Solution. Columns 3 and 4 are a minimum cover for A.

Figure 2.2 A Set-Covering Problem

3. Problem Formulation

The problem investigated here is actually to find the

chromatic number of a graph, which models a communication

network, using the set-covering approach [Ref. 9]. Consider

a communication network consisting of n stations and m links

which is modeled by a graph, G, with n vertices and m edges.

A p-coloring of G is the objective of the method where p is

less than n and greater than one. If p = 1, then there would

be no assignment possible, given that at least one edge exists
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in G (m * 0). If p z n, this would be trivial to solve, since

there are only n vertices to be colored.

Thus a formulation of the problem is described which

contains a hypothesis to be tested. This hypothesis is that

a given graph has a chromatic number less than or equal to an

integer p [Ref. 9:p. 320]. The smallest integer p that

satisfies the hypothesis formulated is the chromatic number of

the graph.

The method proceeds by building the unique binary

matrix, for the communication system modeled, so that certain

requirements are met. I r instance, the first step in

building this matrix consists of building a binary submatrix

of size (mp) rows and (np) columns. (The details on

constructing the matrix can be found in Reference 9.) When a

minimum cover for the overall matrix is generated, this

submatrix ensures that no adjacent vertices will be given the

same color. The next step adds (np) more columns and n rows

to the existing matrix to ensure that each vertex is assigned

at least one color. Finally, the current matrix is augmented

by (np) more rows. A one in position (i,j) implies that

either vertex i is assigned color j while a zero in position

(i,j) implies that vertex i is not assigned color j when the

minimum cover is generated. In other words, the minimum cover

must imply a selection and cannot be neutral in the coloring

of a node.
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It is important to understand that the matrix

generated by the above steps is a binary matrix. When the

different submatrices are constructed, the requirements also

determine where the O's and l's occur in the matrix.

Consider the network depicted in Figure 2.3 which

consists of n = 5 nodes and m = 6 links. If the hypothesis

assumed the integer p was 3, then the binary matrix would look

like that of Figure 2.4. The location of the l's in the

matrix will not be discussed, but their location is obviously

important in selecting the minimum cover for the matrix.

2

K=I =5

1
z= 2yK= 3 K =6

54V

54

Figure 2.3 Example Network

It is pointed out, however, that there should be

3np+2mp total l's in the matrix which contains n+np+mp rows

and 2np columns. Therefore, a communication system with n = 5

nodes, m = 6 links, and a hypothesis of p = 4 colors would

possess a binary matrix of size 49 X 40 and contain 108 l's.
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1 2 3 4 5 & 7 8 9 It 11 12 13 14 15 16 17 19 19 26 21 22 23 24 25 2S 27 28 29 30

2 1 1

4 11
5 1 1
6 1 1

7 1

9 1

11 1

12 1
13 1 1
14 1 1

1 1
I6 1 1

17 1 I

19 1 1

21
22 11I1

23

25 1
26 1 I

27 I

29 I

31 I
32 1
331

34 i

35 1

37

Figure 2.4 Binary Matrix for Network in Figure 2.3
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Thus, even a moderate-sized communication network would

generate a very large binary matrix. For example, a network

with n = 10 nodes, m = 25 links, and p = 5 colors would

generate a binary matrix of size 185 X 100.

As can be seen, the formulation of the problem depends

directly on the hypothesis to be tested, that is, the integer

p. If the graph is indeed p-colorable. then there exists a

minimum cover for the matrix which consists of exactly nP

columns. If the graph is not p-colorable, then the minimum

cover will contain more than np columns. [Ref. 9:p. 321]

4. Observations/Conclusions

The technique employed above to find a minimum cover

determines the minimum number of channels required for a

frequency assignment problem with cochannel constraints. As

Cameron [Ref. 9:p. 321] points out in his evaluation of the

approach, the technique can be formulated and solved for

moderate-size problems, but larger networks may be very time-

consuming.

The set-covering problem is a specific case of the

generalized covering problem taught in many introductory

linear programming courses. Linear programming techniques

have been applied with large success in solving these covering

problems. There exists commercial software available today

which solves many classes of linear programming problems and

most are based on implementation of the Simplex Algorithm.

One such software package is LINDO, a flexible and powerful
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linear program system that is available for both personal and

mainframe computers.

With the speed of today's computers, the technique

employed by Cameron could be used to find a solution in a

reasonable amount of time. The solution would only be limited

by the size of the matrix the software could handle. Again,

this may be a factor when considering a communication network

with many stations and links, because the binary matrix would

be very large, yet it is always very sparse.

Another point to consider is that this technique would

probably be used in conjunction with other theorems and

techniques that would provide upper and lower bounds on the

value of p. In this way, the number of different values for

p may be decreased or increased in searching for the minimum

value.

Again, this technique is used to find the minimum

number of frequencies necessary to equip a network with

cochannel constraints only. Thus, this approach would not be

helpful if the communication system were modeled with adjacent

channel or cosite constraints.

The procedure described in this section was applied to

a frequency assignment problem with cochannel constraints, but

is actually just another technique in solving the generalized

graph coloring problem. There exist other algorithms which

are fairly efficient in arriving at an answer to the graph

coloring problem. One of the most familiar of these
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algorithms is the Welsh and Powell algorithm described by

Dossey, Otto, Spence, and Eynden [Ref. ll:p. 115]. This

algorithm does not solve the problem since it does not always

give an optimal solution. However, it does give a coloring in

good time.

Once again, it is important to realize the nature of

the overall problem. Both the graph coloring problem and the

set-covering problem are NP--complete problems, and are there-

fore hard to solve quickly when seeking an optimum solution.

The next section will describe a technique which

solves the frequency assignment problem using a nonlinear

programming model. This is the third and final technique to

be discussed in this chapter, before discussing the subproblem

associated with the frequency assignment problem.

E. SOLVING THE FREQUENCY ASSIGNMENT PROBLEM WITH A NONLINEAR

PROGRAMMING MODEL

1. Irtroduction

This section will describe the mathematical

programming model formulated by Allen, Helgason, and

Kennington [Ref. 5], to assign frequencies to stations in a

communications network. Their model considers both cochannel

constraints and adjacent channel constraints, and is actually

a snecific type of nonlinear program.

2. Problem Formulation

The authors assume that the communications network

under consideration consists of N radio stations that each
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have one transmitter and several receivers. The transmitter

is assigned its own frequency while the receivers are tuned to

the transmitting frequencies of other station transmitters.

A channel is associated with each transmitting frequency the

way frequencies are assigned channels in a television set.

[Ref. 5:pp. 133-134]

Once again, the frequency assignment problem takes on

the general form of an optimization problem with objective

function and constraints. The objective is to assign one of

F transmit channels tj eac0 transmitter while minimizing any

self-interference caused by cochannel and adjacent channel

conditions. A link in the network is considered to be

interfered with if either of the two following situations

occur: (1) a station receives a signal on a given channel

while a neighboring station transmits on an adjacent channel;

or (2) a station receives two signals on the same channel that

are less than a certain parameter apart in signal strength

[Ref. 5:p. 1343.

Allen and others [Ref. 5:p. 134] used the following

notation in describing their mathematical model. Let

f {I,2,...,F) be a channel and n {,2,...,N) be a station.

Let Xfn = 1, if channel f is assigned to station n and 0

otherwise; g(x1 ,x2,...,xF) is a weighted number of links that

possesses interference given the assignment (xl,x2,...,XF).

Therefore, the mathematical model derived by Allen and others

[Ref. 5:p. 134] is as follows.
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Minimize g(X1IX2, • I xF)

Subject to Xf, = 1 for all n (2.5)

Xfn e (0,1) for all f,n. (2.6)

The objective function seeks to minimize interference

in an assignment while constraint 2.5 above ensures that each

station receives exactly one frequency or channel. Constraint

2.6 implies that xn is a binary variable as described above.

The model given above falls into a class of nonlinear

programs called binary nonconvex nonlinear programs. Allen

and others use a special application of the convex simplex

algorithm to obtain an optimum solution for the model [Ref.

5:p. 134]. Further details of the model and the method of

solution will not be described in this thesis. It is not the

intent to discuss here the convex simplex algorithm that was

used or the computer programming methods developed to solve

the nonlinear program. The purpose here is to emphasize some

of the results and conclusions that can be drawn from the

overall approach used by Allen and others.

3. Observations/Conclusions

Specialized software was written to solve the

mathematical model and was tested on five versions of a real

world communication network that consisted of 43 stations and

63 links. The model was implemented on a CDC Cyber-875

computer with good results. All five runs were completed in

less than one minute of CPU time and the final results were
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quite close to the optimum [Ref. 5:p. 139]. An optimum

solution, in this case, is one in which the frequency

assignment would generate no self-interference at all within

the network.

Allen, Helgason, and Kennington conclude their article

by claiming that their optimization model and software can

greatly assist the decision-maker "in obtaining near-optimal

solutions for the frequency assignment problem." [Ref. 5:p.

139] They also claim their model can handle very large scale

communication networks.

F. SUMMARY

This chapter has described several methods that have been

used in the past to solve certain frequency assignment

problems. The nature of the problem suggests some optimiza-

tion method is the best way to approach it. The methods

previously described use optimization techniques including

integer programming, nonlinear programming, set-covering and

graph coloring. These methods do not always produce optimal

solutions, and when they do, they are often too time-consuming

to be of practical use. That is why it is so important to

increase the effectiveness of a network, without changing the

frequency assignment, once it is found. This is the

subproblem examined in this thesis.

The next chapter will provide additional background

about frequency assignment problems in general, and then dis-

cuss the details leading to a solution of the subproblem.
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III. MAXIMIZING A DIGRAPH GIVEN ITS CONFLICT GRAPH

A. INTRODUCTION

This chapter can be considered the heart of this thesis

and will lead to an algorithm designed by the author to solve

a subproblem of the frequency assignment problem. First, two

different approaches in modeling the frequency assignment

problem will be discussed. One of these approaches will

provide the basis for the method used by the author. The next

section will be used to introduce and explain terms and

definitions that will be required later in the chapter. After

that, additional background information will be presented

before discussing some of the assumptions made in the author's

model.

Once the problem is set up, the next section will describe

the algorithm used to solve the subproblem. This algorithm

helps the decision-maker to create a more efficient

communications network, without changing the number of

frequencies assigned to the network. After the algorithm is

analyzed, it will be used on a sample network in order to

illustrate the results. Finally, the chapter ends with a

summary and conclusions section.

B. MODELING THE FREQUENCY ASSIGNMENT PROBLEM

The general frequency assignment problem discussed in this

thesis is an optimization problem. The objective is to
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minimize self-interference while assigning frequencies to

receivers in the network. As mentioned before, the frequency

assignment problem is equivalent to a graph coloring problem.

Thus, to model a network using the principles of graph theory

is very logical. In the several papers written on the

frequency assignment problem, there seems to be two general

methods to model the communication network as a graph coloring

problem.

The first method is the more general and does not model

specific constraints such as adjacent channel, cochannel, and

cosite constraints. This method is described as follows.

Given a communication network that consists of transmitting

and receiving stations, model the network by a digraph where

each station is a vertex. The arc (x,y) in the digraph

implies that station x can communicate directly to station y.

If there are two different stations, a and b, that can

communicate directly to a third station, c, then there is a

possible conflict when a and b both try to communicate with c

simultaneously. This approach to the communications problem

is where the concept of a conflict graph first arose. A

conflict graph is actually a type of competition graph which

is discussed later in this chapter. The solution to this

problem involves finding a coloring for the conflict graph

which determines a feasible frequency assignment.

The second method, to model a frequency assignment problem

as a graph coloring problem, goes into more detail about the
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different constraints put on the system. For example, Baybars

(Ref. 12:pp. 257-262] uses this approach to model the

frequency assignment problem that has both cochannel and

adjacent channel constraints. Baybars models this type of

communication network with a graph that has two different

types of edges in it. The vertex set denotes the stations as

before. One type of edge models the cochannel restrictions

between two stations and is represented by a solid line. The

second type of edge, a dashed line between two vertices,

indicates that an adjacent channel restriction exists between

the two stations.

Figure 3.1 is an example of a graph for this type of

model. Once again, the solution to this problem involves

coloring the graph described above. Since this graph coloring

includes additional requirements not found in a generalized

graph coloring, Baybars [Ref. 12:p. 259] calls it a

constrained graph coloring.

cochannel
-_ - restriction\adjacent

channel
restriction

Figure 3.1 Network Model
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In coloring a graph, the set of vertices receiving the

same color is called a color class. Each color class is

associated with a frequency in the model. Because the

adjacent channel restrictions imply that two stations cannot

receive adjacent channels, the color classes must possess an

adjacency quality in order to model this additional

constraint. Therefore, let CJ, j = 1,2,...,k denote the jth

color class and call two classes Ci and Cj+1 adjacent. In this

way, by coloring the graph so that: (1) no two vertices with

cochannel restrictions are assigned to the same color class;

and (2) no two vertices wit,. adjacent channel restrictions are

assigned to adjacent color classes, the coloring admits an

assignment to the problem. Baybars [Ref. 12] solves this

problem using an integer programming model, which finds an

optimal solution for the coloring. However, the computer time

required in solving the model is very large even for small

networks.

The first method described, which leads to a conflict

graph for a network, is the approach used to arrive at the

algorithm to be discussed in this chapter. Before discussing

the nature of the problem, there are many definitions, terms,

and notations that will be explained in the next section.

C. DEFINITIONS/TERMINOLOGY

The idea of a graph and a digraph were discussed earlier

in Chapter I. Now specific attributes of the two will be

explained further. A graph is connected if there exists a
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path between every pair of vertices in the graph. In other

words, the graph has "one" piece or component. In Figure 3.2,

graphs G, and G2 are connected, but G3 and G, are not. A

1 8 72 3 5

11

1 2 3 2 53 4

G 5 4 2G1 G2 0

2  G3

Figure 3.2 Graphs

complete graph, K,, is a graph with n vertices in which every

pair of distinct vertices is joined by an edge. Figure 3.3

shows complete graphs, Ks, for n = 2-5. A directed complete

12A

1 ~ ~ 3

K2 K3 3 2
2  3 K4  4 3

K5

Figure 3.3 Complete Graphs

graph, DKn, is a graph with n vertices in which there exists

an arc (x,y) and (y,x) for every distinct pair of vertices x

and y in V(D), as in Figure 3.4. If G = (V,E) is a graph, a
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DK2  48 3
DK3

DK4

Figure 3.4 Directed Complete Graphs

subgraDh of G is a graph H = (W,F) where W is a subset of V

and F is a subset of the edge set E. Any complete subgraph K

of a graph G, is called a clique of G. If K has k vertices we

call it a k-clioue or a clique of order k. If k = 1, then k

is just a vertex. This is called a trivial clique. When

k = 2, the clique is an edge in the graph, and when k = 3, the

clique is referred to as a triangle. A clique is maximal if

it is not contained in a larger clique. The algorithm

discussed later in this chapter uses only maximal cliques. An

edge cliaue coverinQ (ECC) is a collection of cliques which

covers all the edges of G. That is, the union of all cliques

in the ECC is E(G). A minimal edge clique coverinQ of G is

one whose cardinality is least among all edge clique coverings

of G. The clicue coverinQ number of G, denoted cc(G), is the

cardinality of its minimum clique covering. Note here that a

graph may have more than one minimum clique covering.

Cardinality of a set S will be denoted as ISI, and is simply

the number of elements in set S.
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A cycle of length k is a path in a digraph,

vl,el,v 2,e2,...,Vk,ek,Vk+l, where k > 0, v1 = vk+1, and all of the

vertices V1,V21...,Vk and, hence, all of the edges el,e 2,...,ek,

are distinct [Ref. ll:p. 97]. Digraphs which do not have any

cycles are called acyclic digraphs. It is generally said that

a digraph which is not acyclic "has cycles," since the term

cyclic is not used in this case.

The next concept to be explained is a combinatorial

problem which involves matching items, subject to certain

restrictions. This matching problem leads to the concept of

a system of distinct representatives (SDR). Dossey and others

[Ref. 1l:pp. 235-237] explain the idea of an SDR in the

following manner. Let SIS2 ... , Sn be a finite sequence of

sets, where the Si are not necessarily distinct. An SDP for

$I,$2,...,S, is a sequence x11x2 ,...,x n such that xi e Si for

i = 1 to n, and such that the elements xi are all distinct.

The finite sequence of sets, Si, are usually grouped into a

collection, F, called a family of sets. For instance,

consider the family of sets F1, where F, = {S1,S2,S3,S4} and

Si = {i,2,3)

S 2 = (1,3)

S3 = (1,3)

S4 = (3,4,5).

Then an SDR for F, would be 2,1,3,4. This SDR is not unique

for Fl. It is also possible that F does not have an SDR, as

shown below. Suppose F2 = {S1 ,S2,S3,S4) where
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S1 = (2,3)

S2 = (2,3,4,5)

S 3 = (2)

S4 = (3).

In this case, F. has no SDR because S,, S3 and S4 have only two

distinct elements among their union, and it would be

impossible to choose three distinct elements for these sets.

This leads to the famous theorem which was discovered by

Philip Hall. Hall's Theorem explains the conditions which are

necessary in order for a sequence of sets, F, to have an SDR.

Hall's Theorem: The family F = (Si,S2,...,S,) has an SDR if
and only if whenever I is a subset of
{l,2,...,n), then the union of the sets Si
for i e I contains at least as many elements
as the set I does.

Hall's Theorem can best be understood by an example from

Dossey and others [Ref. ll:p. 237]. Hall's Theorem will be

used to show that F3 has an SDR. Let F3 = {S1,S2,S3) where

S= {1,3,5)

S 2 = (1,2)

S3 = (2,5).

The subsets I of (1,2,3) and the corresponding union of

sets Si are as shown in Table 3.1. By Hall's Theorem, since

every set on the right has at least as many elements as the

corresponding set on the left, then F3 has an SDR. One SDR for

F3 is 3,1,2. The concept of an SDR proves to be a major part

of the algorithm to be described.
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TABLE 3.1

SDR

I Union of Sets, Si, i e I
0 0
(1) (1,3,5)
(2) (1,2)
(3) (2,5)
(1,2) (1,2,3,5)
(1,3) (1,2,3,5)
(2,3) (1,2,5)
(1,2,3) (1,2,3,5)

The last idea to be covered in this section is the

competition graph. The notion of a competition graph was

first introduced by Cohen [Ref. 13] in 1968 during his study

of food web models in ecology. The competition graph of a

digraph D = (V,A) is the graph G = (V,E) where V(G) = V(D),

and (x,y) e E(G) if and only if x y c V(D) and (x,z) and

(y,z) E A(D) for some z e V(D). The notation C(D) will be

used to indicate the competition graph corresponding to

digraph D. The competition graph described above is actually

a specific case of the generalized competition Qraph,

G(D,B,C), described below.

Suppose D = (V,A) is a digraph and B and C are sets of

vertices in D. G(D,B,C) is an undirected graph with vertex

set equal to B and with an edge between two distinct vertices

x and y of B if and only if for some a in C, (x,a) and (y,a)

are elements of A(D). Therefore, a competition graph is just

a generalized competition graph where B = C = V(D). The
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generalized competition graph was first introduced by Roberts

and has applications to many problems.

Competition graphs, along with several generalizations and

extensions, have been studied extensively in the last ten

years. Some of these extensions include confusion graphs, row

graphs, niche overlap graphs, and conflict graphs. The

conflict graph introduced earlier is a case of the generalized

competition graph. In this case, B is the set of transmitting

stations and C is the set of receiving stations found in the

network. Define digraph D ith vertex set equal to B u C. An

arc (x,y) in the digraph implies that station x in B is

transmitting directly to -tion y in C. Then G(D,B,C) is the

conflict graph for the transmitting stations. This means that

two stations in the network could possibly communicate

simultaneously to a third receiving station and thus a

conflict would arise. Because this competition graph is

actually a conflict graph for the transmitting stations, the

coloring for this graph determines the frequencies assigned to

the transmitters.

Another term associated with the competition graph is the

competition number. The competition number of a graph G,

denoted k(G), is the smallest integer k such that G u Ik is a

competition graph of some acyclic digraph. Here Ik is the

notation used to describe a graph of k isolated vertices and

no edges. Calculating the competition number for an arbitrary

graph is not a simple task. In fact, the problem of computing
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the competizion number for a graph is another example of an

NP-complete problem.

Note that the competition number of a graph is only

defined for graphs wh..ch are competition graphs of acyclic

digra ",s. This initial restriction to acyclic digraphs can be

attributed to Cohen. Cohen observed that most food web models

were acyclic, disallowing forms of cannibalism, and thus the

restriction to this type of digraph was introduced. This

leads into the next section which will cover some of the

history behind competition graphs.

D. BACKGROUND

Many people went on to study competition graphs after

Cohen introduced the idea in 1968. In his studies, Cohen was

primarily interested in the case where D was an acyclic

digraph. Others who have written papers on the acyclic case

include Dutton and Brigham [Ref. 14], Lundgren and Maybee

[Ref. 15], Opsut [Ref. 16], and Roberts [Ref. 17]. Dutton and

Brigham [Ref. 14:pp. 315-317] were first to introduce the case

in which D was not necessarily an acyclic digraph. They also

went on to characterize competition graphs of digraphs that

were allowed to have loops. Roberts and Steif [Ref. 18:pp.

323-325] studied parallel characterizations for the case in

which the digraphs were allowed to have cycles but no loops.

1. Assumptions

The case in which the digraphs were allowed to have

cycles but no loops is the case studied in this chapter. This

46



is due to the fact that communication networks modeled by

digraphs most commonly fall into this class of digraphs. A

loop would imply that a station was linked or communicating

to itself, which does not make sense. Furthermore, to allow

for an exchange of information, the network should have

cycles. This gives stations in the network alternative routes

over which to communicate to other stations. These

alternatives help make the overall network more reliable

and/or efficient. Therefore, the first two assumptions made

about the digraph model of the communication network under

study, is that it should be loopless but could have cycles.

The next assumption made involves competition numbers.

Digraphs with competition graphs having a competition number

greater than zero will not be considered. In other words,

given a conflict graph on n vertices, the assumption implies

that the digraph must also have n vertices. (Formally, the

term competition number is not appropriate for a competition

graph of a digraph with cycles, as used here. However, since

these types of competition graphs are not studied, the

formalities about a competition number are not discussed

further.)

This assumption is a logical one considering that a

decision-maker would know all of the stations in the network.

Thus, the vertex set of the digraph would be known beforehand

and would be the same as the vertex set of the corresponding

competition graph. Because the competition graph under
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discussion is actually a conflict graph, from this point on we

will use the term conflict graph along with the notation C(D).

The last assumption made about the model is that the

conflict graph is connected. This assumes that the conflict

graph for the original communications network has been

separated into different components, and each is a separate

problem in itself. The algorithm will only apply to each

separate component of the conflict graph. Thus, when the term

conflict graph, digraph, and network are used in describing

the model, they are actually referring to the one specific

component currently under study. The assumptions made

concerning the model are summarized in Table 3.2.

TABLE 3.2

ASSUMPTIONS

#1 - The digraph modeling the network does not have

loops.

#2 - The digraph may have cycles.

#3 - Competition graphs (conflict graphs) having a
positive competition number are not considered.

#4 - The conflict graph is connected.

2. Approaching the Problem

The idea to study a communication network from the

worst case approach arose while studying the conflict graph of

a network. The real question is: Given the conflict graph of
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a digraph, how cc-mplex can the digraph be, with respect to the

number of arcs it contains? In other words, how complex can

the actual network be and still possess the exact characteris-

tics of the original conflict graph? Thus, given a conflict

graph, the corresponding digraph will be constructed so that

it contains the maximum number of arcs. This "maximum"

digraph will still possess only the conflicts implied by the

conflict graph.

Once the maximum digraph is found, one can see how

complex the actual network might be. In this manner, a

decision-maker is able to identify how many additional links

can be supported by the network, without increasing the

current number of conflicts. Thus, the overall network can be

made more reliable or efficient without requiring additional

frequency support. So the number of frequencies assigned,

based upon the conflict graph, are not affected, yet more

links can be added to the original network.

The concept of a conflict graph is a flexible tool

which proves to be very valuable to model problems associated

with communication networks. The flexibility results from the

fact that the "conflict" which is modeled by a conflict graph,

can model different parameters or constraints in the network.

For instance, the conflict can stand for an adjacent channel

restriction between two stations in one case, or it can model

cochannel constraints in another application. Thus, the
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conflict graph is a tool which can be used to model more than

one specific constraint, although not in the same model.

E. ALGORITHM

1. Overview

To maximize a digraph, D, we begin in a trial and

error type fashion with conflict graphs on three vertices.

All of the different graphs with three vertices are

investigated before studying graphs with four or more

vertices. The goal is to put as many arcs as possible into

the corresponding digraph without violating the conditions

implied by the conflict graph. Because the method used

maximizes the number of arcs drawn into each vertex, the focus

to maximize D is changed from the digraph as a whole, to the

vertex level. Obviously, maximizing the number of arcs in the

overall digraph is equivalent to maximizing the number of arcs

going into each vertex, since you cannot send more than one

maximal clique into a vertex. Before going into any more

detail about the analysis which leads to the algorithm

employed, there are certain mathematical preliminaries that

should be covered.

2. Mathematical Preliminaries

This section describes two theorems that are used in

support of the algorithm derived. The theorems discussed here

appear exactly as they were originally presented. Thus, when

the word competition graph is used, there is nothing lost in

the translation if one were to use conflict graph instead.
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This is due to the fact that a conflict graph is nothing more

than a specific case of the competition graph.

The first theorem, attributed to Roberts and Steif

[Ref. l8:p. 324], explains certain characteristics which a

competition graph (conflict graph) must possess in order for

it to be the competition graph of a digraph without loops.

Roberts and Steif use the notation m(G) for the clique

covering number, whereas the notation cc(G) is more widely

used currently.

Theorem 1 (Roberts and Steif). If IV(G) I = n, then G is a
competition graph of a digraph which has no loops
if and only if G w K. and m(G) : n.

Since the digraph, D, is not allowed to have loops, G

cannot be K2 because it is not possible to construct D without

loops. D would have to look like Figure 3.5 below in order to

have K2 as its competition graph.

Figure 3.5 Digraph

If G has more than n cliques in its edge clique

covering (ECC), then it will not be possible to construct D on

n cliques. For example, consider the competition graph in

Figure 3.6. The ECC is also given in the figure. Here, the
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ECC consists of six K2's. Since n is 5 in this graph, it is

not possible to draw a digraph on five vertices which

satisfies the six separate conflicts implied by the six

cliques of G.

ECC: C = {ClC 2 ,...,C 6 }

C1 = (1,2)

2 C 2 ={2,3}

C3 = {3,4}

C4 = (4,5)

C. (2,5)

43 C6 = (1,4)

Figure 3.6 A Competition Graph and its ECC

The best one could do is satisfy five edges of G

corresponding to five of the six cliques in its ECC (see

Figure 3.7 below). Figure 3.7 displays other information in

a way that will be used throughout the rest of this chapter.

The clique (4,5) shown associated with vertex 1 of the

digraph, implies that vertex 1 has been used in satisfying the

conflict corresponding to that clique in the conflict graph.

So, clique (4,5) was "sent" to vertex 1 in this case. By

sending a clique into a vertex, u, it is meant to draw an arc

(t,u) in D, for all vertices t that are elements of the

clique. Therefore, Figure 3.7 is not capable of satisfying

the sixth clique, (2,5). This also gives an example of a
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1{ 4,5)

53,4 ' 2 {1,4)

4 3 {1,2)

{2 ,3}

Figure 3.7 Digraph

graph which requires additional isolated vertices to become a

competition graph, i.e., its competition number is not equal

to zero.

This has been a short explanation of what Theorem 1

actually implies. Roberts and Steif [Ref. 18:pp. 324-325]

have presented a formal proof of the theorem, which is based

on the following theorem.

Theorem 2 (Roberts and Steif). G is a competition graph of
a digraph which has no loops if and only if there
are cliques C1 ,C 2 ,...,CP which cover the edges of
G and such that if Di = V(G)-Ci, then
{D1 , D21 ... , DV} has a system of distinct
representatives.

Theorem 2 plays a major part in the algorithm to

follow, since it guarantees that the family of sets

{DI,D 2, ... ,DP) has an SDR, if the Di are constructed as defined.
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The proof of Theorem 2 can be found in Roberts and Steif [Ref.

18:p. 324] and is a very elegant, but simple proof.

3. Formulation and Analysis of the AlQorithm

As the analysis continued, it was soon realized that

the maximum number of arcs that could be sent into a vertex

was associated with the maximal cliques of C(D). For every

pair of arcs (x,v) and (y,v) that enter vertex v of D, there

must exist an edge {x,y) in C(D). If there were three or more

arcs into vertex u in D, then there has to exist an edge in

C(D) between every pair of vertices which enter u. For

example, consider the conflict graph and corresponding digraph

in Figure 3.8. In order to add arcs (x,v), (y,v), and (z,v)

to D, there must exist edges {x,y}, (y,z) and {x,z) in C(D),

which is a 3-clique. Therefore, it is not possible to add

arcs from vertices vl,v 2 1 ... ,vk to vertex z in D unless C(D)

contains a k-clique made up of vertices vl,v 2,...,vk.

Figure 3.8 A Conflict Graph and its Digraph

The idea of using maximal cliques naturally goes along

with the goal of trying to maximize the number of arcs in D.

In order to maximize the number of arcs into each vertex, the
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maximal cliques of C(D) have to be known beforehand. Thus,

the first requirement is to find all of the maximal cliques in

C(D). Therefore, an edge clique covering is obtained for C(D)

using only maximal cliques. This part of the problem is a

major task in itself for arbitrary graphs. In fact, the

problem of covering the edges of a graph by the minimal number

of cliques is known to be NP-complete.

By knowing the maximal cliques, it is easy to

determine the maximum number of arcs that could enter a single

vertex in D. Obviously, 3ince the maximum is sought, the

largest maximal clique is the place to start.

An algorithm is r rived to organize the steps to be

performed in arriving at this maximum digraph. But before an

algorithm can be developed, the problem has to be bounded

first. The lower bound on the maximum number of arcs is

derived and then the upper bound is found.

The algorithm proceeds as follows. Given the conflict

graph, C(D), we find the minimal ECC using maximal cliques, Ci,

and construct Di = V(G)-C. Let n be the number of vertices

in C(D), m be the number of cliques in the ECC, and Cm be the

clique of largest cardinality. Define k(G) to be the size of

this largest clique. (The restriction that m 5 n still

applies.) By Theorem 2, we know an SDR exists for F =

(DI,D 2,....Dm , since C(D) is a competition graph. Consider the

SDR for D1,D2, ... Dm . Construct arcs in D by sending cliques
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CQ into the vertex selected as the representative for D,. At
m

this point, the digraph contains C I arcs.i~:l

The remaining (n-m) vertices in D receive arcs from

the vertices in Cm. At worst, each of these vertices, ui, are

elements of Cm.  Since D is not allowed to have loops, this

implies that (k(G)-l) arcs will be sent into each ui, where ui

is not a representative for DI,D 2,...,Dm.  This adds an

additional (k(G)-I) (n-m) arcs to D. Thus, the lower bound for

the maximum number of arcs in the digraph corresponding to

C(D) is

/ ICil + (,-(G)-l)(n-m) form > 2 . (3.1)
i=1

Figure 3.9 is an example of a conflict graph which has

this lower bound for the maximum number of arcs in its

corresponding digraph. The maximum number of arcs is ten,

which agrees with Formula 3.1 when n = 4, m = 2 and k(G) = 2.

4~C 1 = {1,2,37

C 2 {1,3,4)

2 3

Figure 3.9 Graph
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The upper bound on the maximum number of arcs in D is

derived in a similar manner. The first part of the bound
m

remains the same, so m vertices in D have a total of i 1Cil
i=l

arcs. From this point on, the upper bound is different than

the lower bound for the remaining (n-m) vertices in D.

The upper bound is achieved when the remaining

vertices in D are considered. If these vertices, ui, are not

elements of C,, then C, can be sent into each of these vertices

without losing any arcs. Thus, an additional k(G) (n-m) arcs

are added to D, and the upper bound is

m
1CiI + k(G)(n-m) for m 2 . (3.2)

Figure 3.10 is an example of a graph in which the

maximum number of arcs equals the upper bound. The maximum

number of arcs for the corresponding digraph is 24 which is

what Formula 3.2 gives for the upper bound, when n = 8, m = 5

and r(G) = 4. The graph is able to achieve the upper bound

because cliques C1,C2,C3 and C4 can be sent into vertices 2,1,4

and 3 respectively, which allows C5 to be sent into the

remaining vertices.

One key in reaching the upper bound is that cliques

C1,C21 C3 and C4 are only sent into vertices that are elements of

C5. If a smaller clique is sent into a vertex which is not an

element of the largest clique, the upper bound cannot be
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5 6

C1 = (1,5)

C2  (2,6)

C3 = (3,7)

3C 4 = (4,8)
3C 5 = (1,2,3,4)

8

Figure 3.10 Graph

achieved. This observation leads to a conclusion that the

upper bound cannot be obtained if r*k(G) < m-r, where r is the

number of largest maximal cliques with cardinality k(G), and

m is the number of maximal cliques. For example, if there are

two largest maximal cliques with k(G) = 3, and a total of nine

cliques, it is not possible to send the seven smaller cliques

into seven distinct vertices which are in the two largest

cliques. Thus, at least one of the seven smaller cliques must

be sent into a vertex outside of the set of the largest

cliques. These vertices cannot receive arcs from the largest

cliques, so the maximum number of arcs is less than the upper

bound. This is just one case in which the maximum digraph

would not achieve the upper bound. There are many other

cases.
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The difference between the upper and lower bounds is

(n-m). One should be aware that the bounds are only defined

for graphs in which m 2 2. Therefore, a complete graph, Kn,

which possesses one maximal clique, is not defined by these

bounds.

The algorithm developed to maximize the number of arcs

in a digraph given its conflict graph is listed below. An

explanation of each step follows the algorithm.

Algorithm (Maximizes the Number of Arcs in a Digraph, Given
its Conflict Graph)

Step 1 (Label C(D) and D, Initialize list L)
Label the vertices in C(D) 1,2,...,n.
Label the vertices in D, 1,2,...,n
corresponding to the n vertices in C(D).
Put the numbers 1,2,...,n, corresponding to
vertices 1,2,...,n in a list L.

Step 2 (Find an ECC for C(D) using maximal cliques)
Find a minimal edge clique covering for C(D)
using maximal cliques.
Call the collection of cliques
C = (CIC 21 ...,C.).

Step 3 (Special case: C(D) = Kn)
If C(D) is a complete graph, Kn, then D will be
a directed complete graph, DKn, with a maximum
of n(n-l) arcs, stop.
If C(D) is not a complete graph, go to Step 4.

Step 4 (Construct sets D, and F)
Construct the set Di, for each Ci, found in Step
2, such that Di = V(C(D))-C,, i = 1,2,...,m.
Let F = (D ,D2 ,...,D).

Step 5 (Find an SDR for F)
Find a system of distinct representatives,
XX2,...I,xm, for F out of all possible SDR's
which maximizes the number of xi meeting the
following constraint:

Pick xi e Dr such that there does not exist
Dt for which x, c D, and IDrI > IDK
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Step 6 (Add arcs to D, Update L)
Create arc (w,xi) in D for all w e Ci, i =

1,2,...,m.
Delete all xi c SDR from L. (Now list L has
In-ml vertices remaining in it.)

Step 7 (Maximize arcs into remaining vertices, Update
L)
Consider the remaining numbers (vertices) in L
in any order.
Pick vertex j from L.
Delete j from all cliques Ci in wnich j is a
member and call these new sets Ri. If j is not
a member of Ci, the set is still renamed Ri. Do
this for i = 1,2,...,m.
Pick the largest Ri, with respect to
cardinality, breaking ties randomly, and call
this new set K.
Create arc (z,j) for all z E Kj.
Delete vertex j from list L.

Step 8 (Repeat Step 7)
If L is not empty, go to Step 7.
If L is empty, stop. All vertices in D have
been assigned a maximum number of incoming
arcs, and D is maximum.

The first step in the algorithm is the initialization

step. Since one assumption of the model is that the conflict

graph must have competition number zero, then IV(C(D))I must

equal IV(D) I. In other words, if C(D) has n vertices, then so

does the corresponding digraph. Therefore, Step 1 labels the

vertices of both C(D) and D with the labels 1,2,... ,n and puts

the vertices in a list.

Step 2 of the algorithm finds a minimal ECC for C(D)

using maximal cliques. It should be noted here that this

minimal ECC is not necessarily unique for C(D). Figure 3.11

is an example of a graph which has two different minimal

ECC's, using maximal cliques. The two different coverings, C
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C = (CI,C2,C3,C4) C' = (CFC2,C 31C 4 )
8C = (1,2,3) C' = (1,2,3)

C2 = (3,4,5) C2  = (3,4,5)

4 C3 = (5,6,7) C3 ' = (5,6,7)

C4 = (2,7,8] C4' = (2,7,8)

C5 = (2,5,7) C5 1 = (2,3,5)

Figure 3.11 A Graph with Two Different Minimal Coverings

and C', are listed in the figure. The difference in the

coverings is due to the fact that edge (2,5) can be considered

an edge in clique (2,5,7) or (2,3,5). This choice for an ECC

will not affect the maximization of digraph D, which is

accomplished by the remaining steps in the algorithm.

In arriving at this algorithm, several different

conflict graphs were studied, which helped to develop certain

steps in the algorithm. For instance, Figure 3.6 was the

first conflict graph studied in which there were more maximal

cliques than vertices. By Theorem 1, the conflict graph i E

not the competition graph of a digraph without loops, so the

assumptions of the model are not met. As a result, Step 2

requires that the number of maximal cliques in the minimal ECC

be less than or equal to the number of vertices in the

conflict graph. Assumption #3 is also derived as a result of

this analysis.
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The third step handles the special case when the

conflict graph is a complete graph, K . If C(D) is complete,

then digraph D is a directed complete graph, DKn, with

n(n-l) arcs, because this is the maximum number of arcs

possible in a digraph without loops, and it satisfies the

conflict graph. .f C(D) is not complete, the algorithm

proceeds.

Once the minimal ECC is found, it is time to decide

how the maximal cliques of the ECC are to be used to maximize

the digraph. Because D is not allowed to have loops, it is

not possible to send a maximal clique into a vertex that is an

element of that maximal clique. (Once again, sending a

clique, Cx, into a vertex, y, means drawing an arc (v,y) in

digraph D, for every vertex v e C,, which is a clique of C(D)).

Consequently, all of the conflicts corresponding to this

clique are not satisfied in this case. In order to maintain

maximization from a maximal clique, Cr, that clique has to be

sent into a vertex which is not an element of Cr. Step 4 helps

satisfy this requirement by constructing set Di for each Ci

C, such that D, is defined to be V(C(D))-C i. This implies that

clique Ci can be sent into any vertex which is an element of

Di without losing an arc in digraph D.

The next step helps to decide which maximal clique can

be sent into which vertex. Another factor becomes apparent at

this point, in addition to maintaining the maximization from

the cliques. In ordcr to satisfy the conflicts of C(D), each

62



maximal clique has to be sent into a distinct vertex. If more

than one maximal clique can be sent into the same vertex, then

at least two of the maximal cliques in the ECC are not maximal

to begin with. Therefore, a specific vertex cannot receive

more than one maximal clique. Furthermore, in maximizing D,

it makes sense to send the largest maximal clique into as many

vertices as possible.

Since each maximal clique requires a distinct vertex,

the idea of using a system of distinct representatives (SDR)

is analyzed. The SDR satisfies this requirement specifically.

However, the SDR does not satisfy the requirement of sending

the largest maximal clique into as many vertices as possible,

without modifying it in some way. (An SDR is guaranteed by

Theorem 2, since the Di are defined as specified.)

When the conflict graph in Figure 3.12 is studied, the

SDR is modified to ensure that digraph D remains maximized.

If the SDR 3,4,2 is chosen for F, an arc would be lost in

digraph D. This happens because of sending clique C3 into

vertex 2 instead of sending clique C1 into vertex 2. C3 has

only two elements in its set, where C, has three elements. An

optimal SDR would be 3,4,1. As a result, the SDR is modified

to ensure that each vertex receives the largest maximal clique

possible. Consequently, the following additional restriction

is added to the SDR. Select an SDR, x1,x2 ,...,xm which

maximizes the number of x, where xi E Dr such that there does

not exist Dt for which xi e Dt and IDrI > IDt. Figure 3.12 is
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C = (C 1 1 C2 ,C 3 ) F = (Dj,D 2 ,D 3 )

5 2 C= (1,4,5) D= (2,3)

C2 = (1,2) D2 = {3,4,5)

C3 = (3,4) D3 = (1,2,5)
3

4

Figure 3.12 Example Conflict Graph

an example in which all three of the xi meet this restriction.

However, there are examples of conflict graphs in which all m

of the xi cannot meet this restriction. Figure 3.13 is one

example. In this example, it is not possible to select an SDR

in which all three of the xi meet the restriction. This is due

to the fact that x3 must be chosen from among vertices 1,2,3

or 4 which are all elements of a smaller Di.

C = {C 1 ,C 2 ,C 3 ) F = {Dj,D 2 ,D3 )

C1  = (1,2,6) D, = (3,4,5)

C2 = (3,4,5) D 2 = (1,2,6)

3 C3  = (5,6) D = {1,2,3,4)

4

Figure 3.13 Example Conflict Graph
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Once this step is completed in the algorithm, the

conflicts in C(D) are all met. This is referred to as meeting

the "minimum requirements" of the graph. If the additional

restriction is not met in selecting an SDR for F, the minimum

requirements are still satisfied, but the digraph will not

have as many arcs. After the selection of an optimal SDR, it

is time to look at the remaining (n-m) vertices in digraph D.

Steps 7 and 8 are used to maximize the remaining

vertices which are not chosen by the SDR in Step 5. The goal

is to send the largest maximal clique into each of these

vertices, if possible. Consider vertex j which was not picked

as a representative of the SDR. Since loops are not allowed

in the digraph, this is taken into account by deleting element

j from all of the maximal cliques in which j is a member. If

j is not a member of a maximal clique, the clique remains the

same. Now, the largest of these sets is chosen, so that the

elements of the set will be sent into vertex j in the digraph.

This step ensures that the largest maximal clique is sent into

each of the vertices not selected in the SDR.

This completes the analysis of the algorithm. The

next section applies the algorithm to an example network in

order to show how the steps are completed in detail.

F. APPLYING THE ALGORITHM TO A COMMUNICATIONS NETWORK

In this section, we apply the algorithm described in the

previous section to an example communications network and

arrive at a maximum digraph. This maximum digraph, D, is a
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digraph that satisfies the given conflict graph, C(D), and

which possesses the maximum number of arcs possible.

Therefore, we start with the conflict graph that corresponds

to the digraph that models the network. Let us consider the

conflict graph and its corresponding digraph shown in Figure

3.14 below as the example. Starting with Step 1, the

algorithm is applied to C(D). Step 1 labels both C(D) and D

and puts the vertices 1,2,...,7 into a list L. Digraph D will

1

2 3

2

6
3

7 5 4

5 4

Figure 3.14 Conflict Graph and Digraph of the
Example Network

now refer to the maximum digraph and not the original digraph

above. The results shown in Figure 3.15 are obtained from

Step 1. Once Step 1 is completed, a minimal ECC is found

using maximal cliques.

The minimal ECC for C(D) is in fact unique for this

example and consists- of four maximal cliques. Hence, C =

(C 1 ,C 2 ,C 31 C4 ), where C1 = {i,2,5,7), C2 = (2,4,5}, C3 = (2,3) and
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1

2 3

7 2 L = (1,2,3,4,5,6,7)

60 3
7 5 4

5 4

6

Figure 3.15 Results of Step 1

C, = {6,7). Note here that m = 4 and n = 7, so m : n is

satisfied.

Since C(D) is not a complete graph, K7, the algorithm

proceeds to Step 4. At Step 4, the sets D1,D2,D3 and D4 are

constructed for ClC 2,C3 and C4 respectively. The family of

sets, F, is then constructed with D1 ,D2,D3 and D4 as its

elements. When Step 4 is completed, the results shown in

Table 3.3 are available. The next step can be considered the

most important part of the entire algorithm. This step

involves finding an SDR for F.

TABLE 3.3

RESULTS FROM STEP 4

C = (CIC 2,C 31 C 4} F = {D1,D2,D3,D4}

C, = {i,2,5,7} D, = (3,4,6)

C2  = (2,4,5) D 2 = (1,3,6,7)

C3 = (2,3) D3 = (1,4,5,6,7)

C4  = (6,7) D4 = (1,2,3,4,5)
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Step 5 of the algorithm selects an SDR for F which

must meet the additional restriction mentioned in the previous

section. As a result of meeting the additional restriction,

3, 4 or 6 could be a representative for D1, 1 or 7 could be a

representative for D2, 5 is the only choice as a representative

for D3, and 2 or 5 are choices for D4. Since the SDR requires

distinct representatives, 5 is not then a choice for D4 because

it must be chosen for D3. Therefore, there are six possible

SDR's for F in which all of the representatives meet the

restrictions. They are given in Table 3.4 below. Each of

TABLE 3.4

POSSIBLE SDR'S FOR F

SDR

#1 - 3,1,5,2

#2 - 4,1,5,2

#3 - 6,1,5,2

#4 - 3,7,5,2

#5 - 4,7,5,2

#6 - 6,7,5,2

these SDR's will result in a maximum digraph with the same

number of arcs. Since there is a choice in the SDR for this

case, D is not unique for this example. Without loss of

generality, SDR #1 will be used to complete this exampli.

Once the SDR is selected, the corresponding arcs must be drawn

in D and list L is updated. The list now ccntains elements 4,
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6 and 7 and D looks like the digraph shown in Figure 3.16,

after Step 6 is completed. Once again, a clique drawn next to

a vertex implies the elements (vertices) in that clique have

arcs into that vertex.

1 {2,4,51

767
7L = {4,6,71

54

(2,3)

Figure 3.16 Digraph Through Step 6

At this point, the digraph in Figure 3.16 satisfies

all the minimum requirements of the conflict graph. All that

remains is to maximize vertices 4, 6 and 7 using Step 7.

Consider first vertex 4. In Step 7, vertex 4 is deleted from

the Ci for which it is an element, and the sets are renamed Ri .

Those cliques that do not contain vertex 4 as an element are

also renamed. As a result of Step 7, the sets Ri are those

found in Table 3.5. Set R, is the largest in this example, so

arcs are drawn in D from each vertex that is an element of R,

to vertex 4, and vertex 4 is deleted from list L. Since L
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TABLE 3.5

SETS Ri

R, = (1,2,5,7)

R2 = (2,5)

R3 = (2,3)

R4 = (6,7)

still has two elements in it, Step 7 must be repeated again

for vertices 6 and 7. When vertex 6 is considered, the sets

Ri are exactly the same as when vertex 4 was considered. Thus,

the arcs (1,6), (2,6), (5,6) and (7,6) are added to D at this

point. The last vertex to be considered is vertex 7. In

constructing sets Ri, there are two sets, R, and R2, with three

elements in them, so another choice is introduced. One could

choose R, = (1,2,5) or R2 = (2,4,5) as the largest set. In

this example, R, is chosen and arcs (1,7), (2,7) and (5,7) are

added to D.

Finally, the algorithm is completed and D is

maximized. The maximum number of arcs that digraph D may

contain is 22, and looks like that of Figure 3.17, based on

the choices made in this example.

G. SUMMARY AND CONCLUSIONS

In conclusion, a maximum digraph is found for the given

conflict graph of Figure 3.14, using the algorithm of the

previous section. This digraph is not unique since there are

choices made at Steps 5 and 7 of the algorithm. There are six
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1 {2,4,57

{1,26,71

U,2,5,71 3 f1,2,5,7;

5 4 {1,2,5,7)

'2,3>

Figure 3.17 Maximum Digraph

possible SDR's at Step 5 and two choices for vertex 7 at Step

7. It is also possible for a choice to arise in selecting an

ECC in Step 2, although this example had a unique covering.

Although Figure 3.17 is a maximum digraph for the given

conflict graph, it does not achieve the upper bound. The

upper bound for this graph would be 23 arcs since n = 7,

m = 4, and 2(G) = 4. The difference arises from the fact that

C1 is sent into a vertex that is an element of C,.

This maximum digraph provides certain information to the

decision-maker. If the current communication network being

analyzed possesses 22 links, then no additional links can be

added without affecting the given conflict graph. If the

conflict graph is changed, the frequency assignment for the

network may or may not change, since the frequency assignment
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is found using the conflict graph. If the communication

network actually has fewer than 22 links in it, then it is

possible to add links to the network in such a way that the

current frequency assignment is not affected.

In order to determine the specific links that could be

added, the decision-maker must examine both the conflict graph

and corresponding digraph that models the network. In this

way, the choices made when applying the algorithm would be

picked to coincide with the existing network. Thus, the

additional links would be determined from information obtained

from this maximum digraph corresponding to the actual network.
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IV. CONCLUSIONS AND REMARKS

As the radio frequency communication environment grows

more complex each day, it is important to investigate new ways

to increase the efficiency of communication systems. This

thesis looks at one subproblem of managing a communication

network which requires finding a frequency assignment for the

network. Provided that an acceptable frequency assignment can

be found using techniques outlined earlier, this thesis is

concerned with examining a problem which succeeds the

frequency assignment pha- . That problem involves placing

additional links in the network so as to increase network

efficiency and/or reliability, while not affecting the current

number of frequencies assigned to the network.

Because of certain characteristics associated with graphs

and digraphs in conjunction with networks, this thesis

approaches the problem using graph-theoretic principles. The

overall concept is to model a communication network with a

digraph and then look at the conflict graph of this digraph.

By coloring this conflict graph, one can obtain a frequency

assignment for the network. But once a network possesses a

frequency assignment, is it still possible to improve the

efficiency of the network without affecting the frequency

assignment? That is the problem examined in this thesis. By

placing additional links which do not alter the number of
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frequencies assigned into a network that does not have a

maximal number of links, the overall network can be made more

efficient.

These additional links can be found by comparing the

digraph which models the network with the digraph possessing

the maximum number of arcs obtained from the conflict graph of

the network. The algorithm developed in this thesis helps to

achieve this maximum digraph.

The algorithm consists of several steps which contain

complex problems in themselves. One involves finding a

minimal edge clique covering (ECC) for a conflict graph using

only maximal cliques. The problem of finding a minimal ECC in

general is an NP-complete problem. This particular problem is

currently under investigation. There are other problems which

remain unanswered.

One remaining problem is to classify thcse conflict graphs

that correspond to maximum digraphs which achieve the upper

bound for the number of arcs it may possess. Another problem

involves generalizing the algorithm so that it finds the

maximum digraph for any conflict graph. This problem would

most likely center around Step 5 of the algorithm wlich

selects a system of distinct representatives for the D.

Another possible problem would be to classify those graphs

which possess a unique minimal ECC using maximal cliques only.

It will also be necessary to examine decomposing large

networks into smaller subnetworks so that algorithms can be
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used to maximize less complex systems. This is due to the

problem being NP-complete. If it is to be solved in an

acceptable amount of time, it is possible that a series of

reduced subnetworks will make that task easier.

In addition to these specific problems, there are other

general communication problems that could still be examined.

One of these problems would be to find a site for a future

station in the network whose mission is solely to increase the

efficiency of the network. This type of station is closely

associated with what is called a retransmission station which

is currently being used.

These are just a few of the many problems related to

communication networks and systems which are still under

study. Because of the overall complexity of the communication

environment and the many factors involved, there will always

be new ways in which the utilization of our electromagnetic

spectrum can be made more efficient.
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